Tibial Plateau Fracture

Dr Houssemeddine Kouki

Epidemiology

Incidence

- 1-2% of all fractures
- 10.3 per 100,000 people annually
- Demographics
 - o mean age 52
 - bimodal distribution
 - o males in 40s (high-energy trauma)
 - o females in 70s (low energy falls)
- Location
 - o lateral plateau 70-80%
 - o bicondylar 10-30%
 - o medial plateau 10-20%

Anatomy

- lateral tibial plateau
 - o convex in shape
 - o proximal to the medial plateau
 - o less dense bone
- medial tibial plateau
 - o concave in shape
 - o distal to the lateral tibial plateau
- Biomechanics
 - o medial tibial condyle bears 60% of load through knee
 - o lateral tibial condyle bears 40% of load through knee

Mechanisms

- valgus load
 - o lateral plateau
- varus load
 - o medial plateau
- axial load
 - bicondylar
- combination
 - fracture dislocation
 - high energy
 - usually medial-sided plateau fractures
 - frequently associated with soft tissue injuries
- low energy
 - o usually lateral plateau fractures

Classification

Classification

Hohl and Moore Classification

- Useful for true fracture-dislocations
- fracture patterns that do not fit into the Schatzker classification (10% of all tibial plateau fractures)
- fractures associated with knee instability

Type 1

Type 2

3

Classification

- 3-column concept
- utility:
 - includes posterior plateau fractures that are not considered in Schatzker classification
 - helps determine fixation strategy

Associated injuries

meniscal tears

- o lateral meniscal tear
- more common than medial
- associated with Schatzker II fracture pattern
- associated with >10mm articular depression
- associated with >6mm condylar widening
- medial meniscal tear
 - most commonly associated with Schatzker IV fractures
- ACL injuries
 - o more common in type IV and VI fractures (25%)

Associated injuries

- compartment syndrome
 - associated soft tissue injuries have little bearing on final outcomes
- neurovascular injury
 - commonly associated with Schatzker IV fracture-dislocations
 - common peroneal nerve is most common nerve injury

Physical exam

- Anamnèse
 - mechanism of injury : high-energy vs low-energy
 - o unable to bear weight after injury
 - baseline functional status
 - comorbidities
- Physical exam
 - inspection
 - ▼ look circumferentially to rule-out an open injury
 - assess soft-tissues for timing of operative intervention
 - palpation
 - evaluate for compartment syndrome

Physical exam

- varus/valgus stress testing
 - any laxity >10 degrees indicates instability
 - ▼ often difficult to perform or deferred in acute setting given pain
 - stability assessed in full extension
- o neurovascular exam
 - perform ankle-brachial index if any asymmetry in pulses
 - ➤ ABI < 0.9 proceed with arteriogram
 - assess tibial and common peroneal nerve function

Radiography

- recommended views
 - o AP
 - lateral
 - oblique helpful to determine amount of depression
- optional views
 - o plateau view
 - 10 degree caudal tilt to match posterior tibial slope

Radiography

findings

o on AP

- depressed articular surface
- sclerotic band of bone indicating depression
- x abnormal joint alignment
- fracture plane involving medial/lateral plateau

o on lateral

- posteromedial fracture lines must be recognized
- x abnormal tibial slope

CT Scan

- negative radiographs with high index of suspicion for tibial plateau fracture
- preoperative planning
- obtain after ex-fix if definitive fixation delayed if soft-tissues are not amenable for surgery

findings

- articular depression
- degree of comminution
- fracture plane and location
- posterior coronal split fracture best appreciated on axial and sagittal views

MRI

- Identify meniscal and ligamentous pathology
- occult fractures

Treatment

- minimally displaced split or depressed fractures: articular depression < 5-10 mm
- low energy fracture stable to varus/valgus alignment varus/valgus instability <10 deg
- significant comorbidites that preclude surgical intervention
- o condylar widening < 5mm

• Chirurgical:

- Bridging external fixation with delayed ORIF
- External fixation with limited open/percutaneous fixation of the articular segment
- ORIF
- Arthroscopically assisted reduction and internal fixation
- Arthroplasty

Bridging external fixation with delayed ORIF

indications

- severe open fracture with marked contamination
- highly comminuted fractures where internal fixation not possible
- Fracture / Dislocation

advantages

- allows soft tissue swelling to decrease before definitive fixation
- decreases rate of infection and wound healing complications
- restores length and alignment which helps to better characterize fracture on preop CT

External fixation with limited open/percutaneous fixation

technique

- reduce articular surface either percutaneously or through small incisions
- stabilize reduction with percutaneous lag screws or wires
- pros
 - o minimizes soft tissue insult
- cons
 - pin site complications
 - arthrofibrosis
 - incidence as high as 15% after temporizing external fixator
 - high malunion rates

- o articular depression > 5-10 mm
- o condylar widening > 5mm
- o varus/valgus instability >10 deg
- medial plateau fractures
- bicondylar fractures

timing

- o acute ORIF
 - ▼ Lower-energy fractures with mild swelling
- temporizing knee-spanning external fixation w/ delayed ORIF
 - significant soft tissue injury/swelling
 - × polytrauma

Objectifs

- restore alignment
 - o coronal
 - sagittal
 - o tibial slope
- normal condylar width
- congruent articular surface
- stable knee
- minimize additional soft tissue trauma

Voies d'abords

- Anterolateral
 - Lateral plateau involvement
 - Combination with medial for complex plateau
- Posteromedial
 - Medial plateau
 - Coronal split
- Posterolateral
- Posterior
- Dual approaches
- Anterolateral
- Posteromedial

- Reduction (direct or indirect)
 - open fracture split and elevate ("open the book")
 - create cortical window and elevated with bone tamps
- Assess reduction
 - submeniscal arthrotomy, fluoroscopically, arthroscopically
- Fill metaphyseal void:
 - autograft
 - allograft (cancellous chips)
 - bone graft substitutes
 - calcium phosphate cement :
 - high compressive strength for filling metaphyseal void, less subsidence than ICBG, osteoconductive, biodegradable, highly porous

- absolute stability constructs should be used to maintain the joint reduction
- screws
 - can be used in isolation: isolated depression or simple split fracture
 - often used in conjunction with plate fixation
- options
 - o raft screws
 - placed in subchondral bone parallel to joint surface to support elevated articular fragments
 - lag screws
 - placed perpendicular to plane of split fractures

- conventional non-locking plates
 - buttress plates best indicated for partial articular fractures
 - posteromedial fractures
 - × simple split
- peri-articular locking plates
 - fixed angle mitigates risk of varus collapse
 - **x** comminuted fractures
 - osteoporotic bone

Schatzker I

Schatzker II

Schatzker III

Schatzker IV

Schatzker V

Schatzker VI

Schatzker VI

- hinged knee brace with early passive ROM
- early passive range of motion
- non-weight bearing for 6 weeks followed by partial

weight-bearing for further 6 weeks then weight-

bearing as tolerated

Arthroplastie

- consider in patients >65-years-old with osteoporotic bone
- earlier time to weight bearing
- improved outcomes for primary TKA compared to TKA for failed ORIF

Complications

- Incidence: 25-35%
 - **▼ 3-7% undergo TKA at 10+ years**
- risk factors for arthritis
 - ➤ Meniscectomy, malalignment > 5 deg, instability, bicondylar fracture
- Compartment syndrome
 - Incidence: 7-20%
 - o risk factors
 - Schatzker type IV, high-energy mechanism, associated fibula fracture, fracture length, associated plateau-shaft injury
- Loss of reduction
 - Incidence: 5-30%
 - risk factors
 - ▼ inadequate fixation, severity of fracture, osteoporosis

Complications

- Knee stiffness
 - Incidence :10-25%
 - risk factors
 - increasing age, higher BMI, severity of fracture, prolonged immobilization, involvement of tibial eminence, polytrauma
- Infection
 - o incidence: 2-11%
 - risk factors
 - poor surgical timing based on swelling, open fractures, longer operative time
- Nonunion/malunion
 - incidence
 - **× 2-4%**
 - uncommon due to rich blood supply of cancellous bone
 - risk factors
 - Schatzker type VI (metaphyseal-diaphyseal junction)
 - **x** comminution
 - **x** unstable fixation

Take home message

- Understand the fracture pattern
- Respect the soft tissues
- Partial articular (Schatzker 1-3)
 - Buttress plates and/or interfragmentary screws
- Beware of medial plateau (Schatzker 4)
- Complete articular (Schatzker 5,6)
 - External fixation
 - Preop plan
 - ORIF