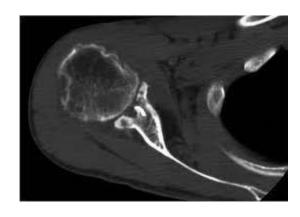
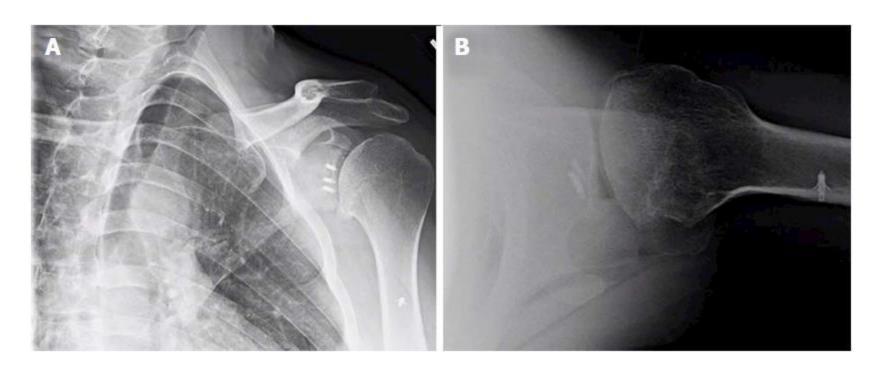
Anatomic Total Shoulder Arthroplasty

Elena Albertazzi

16.10.2025


TSA: What we have on the market

Where Anatomic TSA Shines


- Primary glenohumeral OA with intact, functional rotator cuff
- Younger, active patients where preserving native biomechanics is valuable


Where Anatomic TSA Still Shines

 Post-instability arthropathy with preserved cuff and manageable bone loss

Where Anatomic TSA Still Shines

- Avascular necrosis (centrally preserved glenoid), selected inflammatory cases
- Selected inflammatory cases

Where Anatomic TSA Still Shines

• Fracture?

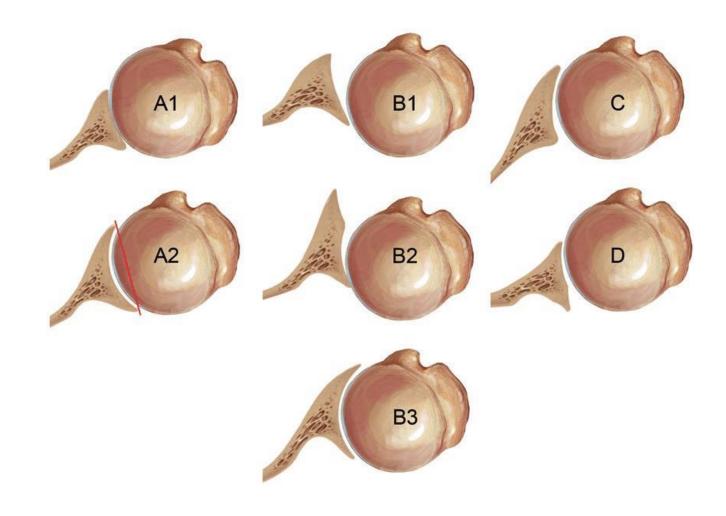
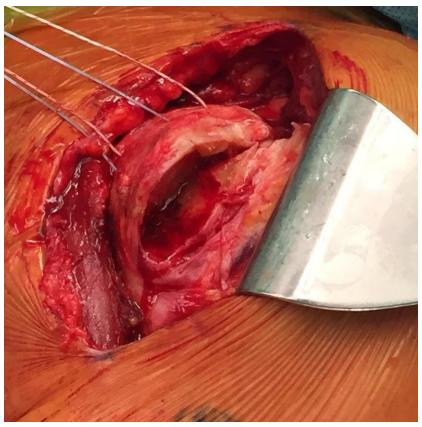


Fig. 1

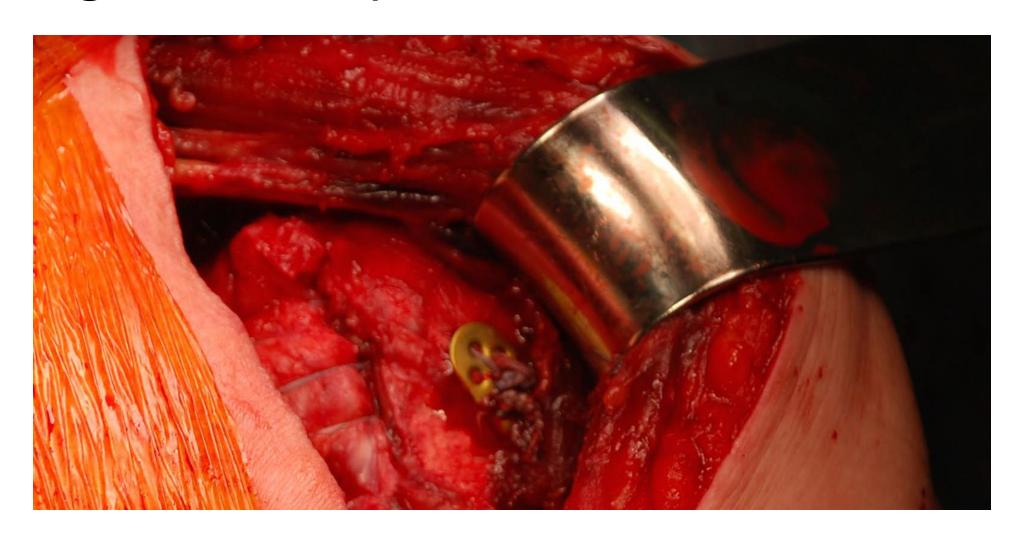
Pathoanatomy & Planning Priorities

- Cuff integrity (subscap quality is decisive for stability), eventually reparable cuff
- Posterior subluxation on AP/axillary (quantify % HH posterior translation)
- Glenoid morphology (e.g., Walch A1–A2–B1–B2–B3–C, D)
- Bone stock, scapular neck length, glenoid inclination/version


Pathoanatomy & Planning Priorities



Approach & Subscapularis Management


- Lesser Tuberosity Osteotomy (LTO) bone-to-bone healing, robust repair; requires precise osteotomy size and anatomical reduction
- Peel footprint repair with transosseous/suture anchors
- Tenotomy simplest exposure; higher risk of length-tension mismatch if not meticulous refixation

Surgical Technique

Surgical Technique

• Stemless: metaphyseal fixation, bone preservation, easier revision; need good bone quality

 Short-stem: forgiving alignment, load sharing; watch for malversion

• Resurfacing: niche; beware overstuffing and limited correction

- Aim 25-45° humeral retroversion aligned to forearm/epicondylar axis
- Avoid overstuffing the humeral head
- Restore head height and medial offset; avoid overstuffing (instability, stiffness)

Implant Strategy (Glenoid - indications)

- •B2/B3 with ≤15-20° retroversion or minimal posterior wear: favor augmented glenoid; PSI helpful; avoid >5–6 mm anterior reaming
- •**High posterior humeral head subluxation:** augment + capsular balancing; avoid overstuffed head
- •Young patients (<60 years): prefer stemless, conservative glenoid correction; set realistic expectations on implant longevity
- •Post-instability arthropathy: evaluate bone loss, remplissage scars; subscapularis quality is critical

Glenoid retroversion does not impact clinical outcomes or implant survivorship after total shoulder arthroplasty with minimal, noncorrective reaming

<u>Travis J Dekker a, W Jeffrey Grantham a, Lucca Lacheta b, Brandon T Goldenberg b, Rony-Orijit Dey Hazra a,b,</u>

<u>Dylan R Rakowski b, Grant J Dornan b, Marilee P Horan b, Peter J Millett a,b,*</u>

► Author information ► Article notes ► Copyright and License information

Anatomic total shoulder replacement with minimal and noncorrective glenoid reaming demonstrates reliable increases in patient satisfaction and clinical outcomes at a mean of 4.6-year follow-up in patients with up to 40° of native retroversion. Higher values of retroversion were not associated with early deterioration of clinical outcomes, revisions, or failures. Long-term studies are needed to see if survivorship and outcomes hold up over time.

Implant Strategy (Glenoid-strategy)

 Cemented pegged vs keeled poly; augmented poly for B2/B3; inlay designs selectively

Implant Strategy (Glenoid-targets)

- Version correction to near-neutral without sacrificing >6–8 mm of anterior bone
- Create slight inferior tilt to reduce superior edge loading

Outcomes

- pain relief most predictive benefit (more predictable than hemiarthroplasty)
- reliable range of motion with preserved internal and external rotation
- good survival at 10 years (93%)
- worse results for post-capsulorrhaphy arthropathy

Complications & Failure Avoidance

- **Early**: Instability (subscap failure), fracture (humeral metaphysis, glenoid), nerve stretch, hematoma/infection
- Late: Glenoid loosening, progressive cuff degeneration, stiffness, polyethylene wear
- Revision rates: TSA ~7% vs Hemi ~13%
- Rotator cuff tears: 1.3–7.8%, often subscapularis

Rehabilitation

- Sling 3–4 weeks (protect subscap/LTO) with early pendulums and distal mobility
- Passive/assisted FE/ER within comfort; limit resisted IR for ~6 weeks if LTO/peel
- Progressive active ROM at 4–6 weeks; strength at 8–12 weeks; sport-specific later

Complications & Failure Avoidance

Avoidance pearls

- Don't over-ream; use augments
- Restore head height/offset; don't overstuff
- Strong subscap/LTO repair; protected rehab
- Neutral tilt

Take Home Messages

- TSA is gold standard in OA with intact/reparable cuff
- Glenoid management is critical: CT planning, avoid overreaming
- Modularity improves anatomical reconstruction & revision options
- TSA shows superior outcomes vs hemiarthroplasty in OA
- Complications mainly involve glenoid & cuff; revision to RTSA is viable

Healing Potential of Lesser Tuberosity Osteotomy in the Surgical Approach for Stemless Shoulder Prosthesis

E. Albertazzi, F. Eckers, A. Hayoz, C. Gerber, M.A. Zumstein, U. Riede

Aim of the Study

Primary aim -> feasibility and intraoperative stability

Primary outcome -> radiographic healing of LTO

 Secondary outcomes -> implant stability, functional clinical scores

Methods

- Radiological evaluation of healing on axial radiographs
 - If possible new radiographs or most recent available (at least 12 months follow up)
- Clinical scores assessed:
 - Oxford Shoulder Score
 - Costant-Murley Score
 - Subjective Shoulder Value

Patients - Demographic

 Total Patients (n) 	34
 Lost to follow up (n) 	6
 Radiological follow up (n) 	28
 Radiological and clinical follow up (n) 	21
 Mean follow up n=28 (mts) 	22 (12-43)
Female/male (n)	12/16
• Implants (n)	
Affinis short Mathys (n)	19

9

Medacta shoulder stemless (n)

Results – clinical scores (n=21)

mean (range)

- Constant-Murley Score (pts)
 77 (36-94)
- Oxford Shoulder Score (pts)
 43 (21-48)
- SSV 87 (35-100)

Results – clinical scores (n=21)

92 (40-100)*

•	Constant-Murley Score	(nts)	

Oxford Shoulder Score (pts)

SSV

Primary surgery Previous surgeries (n=19) (n=2) mean (range) mean (range) 80 (49-90)* 47 (36-58) 45 (21-48)* 20 (28-31)

38 (35-40)

Results – radiological healing (n=28)

• LTO osseous union (%) 100

Implant loosening or mechanical failure (%)

Results - clinical scores (n=28)

- Feasibility (%)
 - No intraoperative cases
 of compliations related to osteotomy
- Intraoperative implant stability (%)
 - No implant loosening observed

Limitations

Limitations:

- Retrospective design
- Small sample size
- Loss to follow up

Conclusion

- ✓ LTO is feasible and does not compromise intraoperative stability.
- ✓ LTO provides reliable bone healing (100% union).
- ✓ LTO leads to good-to-excellent functional outcomes with high CMS, OSS, and SSV scores.
- ✓ Careful indication should be evaluated in revision cases.

Merci Grazie Danke Thanks

References

- •Neer CS II. Displaced proximal humeral fractures: II. Treatment of three-part and four-part displacement. J Bone Joint Surg Am. 1970;52:1090–1103.
- •Neer CS, Watson KC, Stanton FJ. Recent experience in total shoulder replacement. J Bone Joint Surg Am. 1982;64:319–337.
- •Walch G, Boileau P, Noël E. Shoulder arthroplasty: evolving techniques and indications. Joint Bone Spine. 2010;77:501–505.
- •Boileau P, Sinnerton RJ, Chuinard C, Walch G. Arthroplasty of the shoulder. J Bone Joint Surg Br. 2006;88:562–575.
- •lannotti JP, Gabriel JP, Schneck SL, Evans BG, Misra S. The normal glenohumeral relationships: an anatomical study of one hundred and forty shoulders. J Bone Joint Surg Am. 1992;74:491–500.
- •Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty. 1999;14:756–760.
- •Matsen FA III, Lippitt SB. Shoulder arthroplasty: the socket perspective. J Shoulder Elbow Surg. 2007;16(5 Suppl):S241–S247.
- •lannotti JP, Greeson C, Downing D, Sabesan VJ, Bryan JA. Effect of glenoid deformity on implant positioning using patient-specific instrumentation. J Shoulder Elbow Surg. 2012;21:894–902.
- •Gerber C, Pennington SD, Lingenfelter EJ, Sukthankar A. Reverse total shoulder arthroplasty versus hemiarthroplasty for acute proximal humeral fractures. J Shoulder Elbow Surg. 2009;18:317–325.
- •Gerber C, Costouros JG, Sukthankar A, Fucentese SF. Static posterior humeral head subluxation and total shoulder arthroplasty. J Shoulder Elbow Surg. 2009;18:505–510.
- •Gerber C, Wirth SH, Farshad M. Subscapularis-sparing approach for total shoulder arthroplasty. J Shoulder Elbow Surg. 2019;28:1876–1884.
- •Krishnan SG, Pennington SD, Burkhead WZ Jr. Lesser tuberosity osteotomy for total shoulder arthroplasty: surgical technique and results. J Shoulder Elbow Surg. 2010;19:20–29
- •Edwards TB et al. Hemiarthroplasty vs total shoulder arthroplasty for primary OA: multicenter comparison. J Shoulder Elbow Surg. 2003;12:207–213.
- •Favard L et al. Total shoulder arthroplasty: results and complications after ≥8 years follow-up. Orthop Traumatol Surg Res. 2012;98(4 Suppl):S41–S47.
- •Rasmussen JV et al. Outcome and risk of revision following shoulder replacement in OA. Acta Orthop Suppl. 2014;85:1–23.
- •Young AA et al. Secondary rotator cuff dysfunction after TSA for OA: multicenter study >5 years. J Bone Joint Surg Am. 2012;94:685–693...